Wild-type and mutant HCN channels in a tandem biological-electronic cardiac pacemaker.

نویسندگان

  • Annalisa Bucchi
  • Alexei N Plotnikov
  • Iryna Shlapakova
  • Peter Danilo
  • Yelena Kryukova
  • Jihong Qu
  • Zhongju Lu
  • Huilin Liu
  • Zongming Pan
  • Irina Potapova
  • Bruce KenKnight
  • Steven Girouard
  • Ira S Cohen
  • Peter R Brink
  • Richard B Robinson
  • Michael R Rosen
چکیده

BACKGROUND Biological pacemakers (BPM) implanted in canine left bundle branch function competitively with electronic pacemakers (EPM). We hypothesized that BPM engineered with the use of mE324A mutant murine HCN2 (mHCN2) genes would improve function over mHCN2 and that BPM/EPM tandems confer advantage over either approach alone. METHODS AND RESULTS In cultured neonatal rat myocytes, activation midpoint was -46.9 mV in mE324A versus -66.1 mV in mHCN2 (P < 0.05). mE324A manifested a positive shift of voltage dependence of gating kinetics of activation and deactivation compared with mHCN2 (P < 0.05) in myocytes as well as Xenopus oocytes. In intact dogs in complete atrioventricular block, saline (control), mHCN2, or mE324A virus was injected into left bundle branch, and EPM were implanted (VVI 45 bpm). Twenty-four-hour ECGs were monitored for 14 days. With EPM discontinued, there was no difference in duration of overdrive suppression among groups. However, basal heart rates in controls were less than those in mHCN2, which did not differ from those in E324A (45 versus 57 versus 53 bpm; P < 0.05). When spontaneous rate fell below 45 bpm, EPM intervened at that rate, triggering 83% of beats in control, contrasting (P < 0.05) with 26% (mHCN2) and 36% (mE324A). On day 14, epinephrine (1 microg/kg per minute IV) induced a 50% heart rate increase in all mE324A, one third of mHCN2, and one fifth of control (P < 0.05 mE324A versus control or mHCN2). CONCLUSIONS mE324A induces faster, more positive pacemaker current activation than mHCN2 and stable, catecholamine-sensitive rhythms in situ that compete with EPM comparably but more catecholamine responsively than mHCN2. BPM/EPM tandems function reliably, reduce the number of EPM beats, and confer sympathetic responsiveness to the tandem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cation-pi interactions as a possible mechanism for controlling the closing of Hyperpolarization-activated cyclic nucleotide-modulated ion channels

The hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channel gene family is known to contribute significantly to cardiac pacemaking via pacemaker currents. To date, there are four mammalian HCN isoforms (HCN1–4) identified. The importance of HCN channel function to normal cardiac automaticity in mice was recently corroborated in humans diagnosed with idiopathic sinus node dysfunct...

متن کامل

Effect of endotoxemia on heart rate dynamics in rat isolated perfused hearts

Introduction: Beat-to-beat variation in heart rate shows a complex dynamics, and this complexity is changed during systemic inflammatory response syndrome (e.g. sepsis). It is not known whether or not cardiac pacemaker dynamical rhythm is affected by sepsis. The aim of this study was to investigate heart rate dynamics of isolated heart as well as expression of pacemaker channels (HCN) in a r...

متن کامل

Dominant-negative suppression of HCN channels markedly reduces the native pacemaker current I(f) and undermines spontaneous beating of neonatal cardiomyocytes.

BACKGROUND The pacemaker current I(f) contributes to spontaneous diastolic depolarization of cardiac autonomic cells. In heterologous expression, HCN channels exhibit a hyperpolarization-activated inward current similar to I(f). However, the links between HCN genes and native I(f) are largely inferential, and it remains unknown whether I(f) is essential for cardiac pacing. METHODS AND RESULTS...

متن کامل

The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart.

Hyperpolarization-activated, cyclic nucleotide-gated cation currents, termed If or Ih, are generated by four members of the hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channel family. These currents have been proposed to contribute to several functions including pacemaker activity in heart and brain, control of resting potential, and neuronal plasticity. Transcripts of the...

متن کامل

Pacemaker channels produce an instantaneous current.

Spontaneous rhythmic activity in mammalian heart and brain depends on pacemaker currents (I(h)), which are produced by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Here, we report that the mouse HCN2 pacemaker channel isoform also produced a large instantaneous current (I(inst(HCN2))) in addition to the well characterized, slowly activating I(h). I(inst(HCN2)) was specifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 114 10  شماره 

صفحات  -

تاریخ انتشار 2006